[1, 2, a, [1,2], B, 1, [1, 2, 3]]

[H|T]

  1. Remove sublists from the list
% mathematical model:
% process(l1l2…ln) = { [], if L = Ø
%									   { process(l2…ln), if is_list(l1) 
%										 { l1(l2…ln), otherwise
% process(L-list, R-list)
% flow model: (i, o)

process([], []).
process([H|T], R):- is_list(H), !,
										process(T,R).
process([H|T], [H|R]):- %\\+ is_list(H), %not(is_list(H)) %atomic(H) - no condition needed because of the cut above
												process(T,R).
  1. Given a heterogenous list compose of numbers and lists of numbers, substitute each list in which the sum of the elements is odd with the first element of that list
% mathematical model:
% substitute(l1l2…ln) = { [], if L = Ø
%									      { l11 U substitute(l2…ln), if is_list(l1) and sum(l1) % 2 == 1  
%										    { l1 U substitute(l2…ln), otherwise
% substitute(L-list, R-list)
% flow model: (i, o)

substitute([], []).
substitute([H|T], [H1|TR]):- is_list(H),
														 sum(H, S),
														 S mod 2 =:= 1, !,
														 H = [H1|_]
						    			  		 substitute(T, TR).
substitute([H|T],[H|TR]):- substitute(T, TR).
  1. You are given a heterogeneous list, made of numbers and lists of numbers. You will have to remove the odd numbers from the sub lists that have a mountain aspect (a list has a mountain aspect if it is made of an increasing sequence of numbers, followed by a decreasing sequence of numbers).
% mathematical model:
% mountain(l1l2…ln, AF) = { true, if n <= 1 and AF = 1
%													{ false, if n <= 1 and AF = 0
%									        { mountain(l2…ln, 0), if l1 < l2, AF = 0
%                         { mountain(l2…ln, 1), if l1 > l2, AF = 0
%                         { mountain(l2…ln, 1), if l1 < l2, AF = 1
%										      { false, otherwise

% main_mountain(l1...ln) = { isMountain(l1l2...ln, 0),  l1<l2
%													 { false, otherwise

% mountain(L-list, AF-aspect flag)
% flow model: (i, o)
% main_mountain(L-list)
% flow model: (i)

%clauses
mountain([_], 1).
mountain([H1, H2|T], 0):- H1 < H2,
												  mountain([H2|T], 0).
mountain([H1, H2|T], 0):- H1 > H2,
												  mountain([H2|T], 1).
mountain([H1, H2|T], 1):- H1 < H2,
												  mountain([H2|T], 1).

% mountain([H1, H2|T], _):- H1 > H2,
%												    mountain([H2|T], 1).

% mathematical model:
% remove(l1l2…ln) = { [], if L = Ø
%                   { l1 U remove(l2…ln), if l1 is even
%                   { remove(l2…ln), if l1 is odd

% remove(L-list, R-list)
% L – linear list from which we remove odd numbers
% R – the resulting list
% flow model: (i, o)

remove([], []).
remove([H|T], [H|TR]):- H mod 2 =:= 0, !,
												remove(T, TR).
remove([H|T], TR):- % H mod 2 =:= 1,
										remove(T, TR).

% mathematical model:
% process(l1l2…ln) = { [], if L = Ø
%                    { remove(l1l2…ln) U process(l2…ln), if l1 is a list, l11 < l12, mountain(l1, 0)
%                    { l1 U process(l2…ln), otherwise

% process(L-list, R-list)
% L – the initial heterogeneous list
% R – the resulting list
% flow model (i, o)
process([], []).
process([H|T], [HR|TR]):- is_list(H),
														H = [A, B|_],
														A < B,
														mountain(H, 0),!,
														remove(H, HR),
														process(T, TR).
process([H|T], [H|TR]):- process(T, TR).

  1. Given a heterogeneous list made of atoms and list of numbers remove the increasing seguences of numbers from sublists.
% predicates:
% 	remove(L:list, R:list)
% 
% flow model: 
% 	(i, o) or (i, i)
% 	
% domains:
% 	L - the initial list
% 	R - resulting list
% 
% mathematical model:
% 	remove([l1..ln]) = { [], n = 0
% 	 				   { [], n = 2 and l1 < l2
% 					   { remove([l2 l3..ln]), if l1 < l2 < l3
% 					   { remove([l3..ln]), l1 < l2 > l3
% 					   { l1 U remove([l2..ln]), otherwise

remove([], []).
remove([H1,H2], []):- H2 > H1.

remove([H1,H2,H3|T], R):- H2 > H1, 
    					  H3 > H2+1, !, 
    					  remove([H2,H3|T], R).

remove([H1,H2,H3|T], R):- H2 > H1, 
    					  not(H3 <= H2), !, 
    					  remove([H3|T], R).

remove([H|T],[H|R]):- remove(T, R).   

process([], []).
process([H|T], [HR|TR]):- is_list(H),
    			  		  remove(H, HR), !,
    			  		  process(T, TR).

process([H|T],[H|TR]):- process(T, TR).

% Another approach:
% 
% mathematical model:
% 	eat(l1, [l2...ln]) = { [l3..ln]
% 	
% 	packman([l1..ln]) = { [], n = 0
% 					    { packman(eat(l1, [l2..ln])), if l1 < l2
% 					    { l1 U packman([l2..ln]), otherwise
% 					    
% examples:
% 	packman([4,1,2,5], R)                        => R = [] or [4, 5] ?.
% 	packman([1,2,3,4,5,2,3,4,5,6,7,9,11], R) 	 => R = [9, 11].
% 	packman([3,2,1,2,3,4,5,2,3,4,5,6,7,9,11], R) => R = [3, 2, 9, 11].
%	packman([1, 2, 4, 3, 4, 5, 7, 9], R)
%	
% clauses:					   
eat(H1, [H2|T], R) :- H2 =:= H1+1, !,
    				  eat(H2, T, R).
eat(_,T,T).

packman([], []).
packman([H1,H2|T], R):- H2 =:= H1+1, !, 
     				   	eat(H1, [H2|T], ER),
					   	remove(ER, R).
packman([H|T],[H|RT]):- remove(T,RT).