1. Write a parallel program that computes the sum of all elements in a matrix. Use a binary tree for computing the sum.
#include <iostream>
#include <fstream>
#include <vector>
#include <thread>
#include <mutex>
using namespace std;
typedef vector<vector<int>> mat;
mutex mtx;
int compute_sum(const mat &matrix, int start_row, int end_row, int start_col, int end_col) {
int sum = 0;
for (int i = start_row; i < end_row; ++i) {
for (int j = start_col; j < end_col; ++j) {
sum += matrix[i][j];
}
}
return sum;
}
void calculate_tree_sum(const mat &matrix, int start_row, int end_row, int start_col, int end_col, int &result) {
if (start_row == end_row) {
result = compute_sum(matrix, start_row, end_row, start_col, end_col);
return;
}
if (t == 1) {
result = compute_sum(matrix, start_row, end_row, start_col, end_col);
return;
}
int mid_row = (start_row + end_row) / 2;
int mid_col = (start_col + end_col) / 2;
vector<thread> threads(4);
vector<int> sub_results(4);
threads[0] = thread([&]() { calculate_tree_sum(matrix, start_row, mid_row, start_col, mid_col, sub_results[0]); });
threads[1] = thread([&]() { calculate_tree_sum(matrix, start_row, mid_row, mid_col, end_col, sub_results[1]); });
threads[2] = thread([&]() { calculate_tree_sum(matrix, mid_row, end_row, start_col, mid_col, sub_results[2]); });
threads[3] = thread([&]() { calculate_tree_sum(matrix, mid_row, end_row, mid_col, end_col, sub_results[3]); });
for (auto& thread : threads) {
thread.join();
}
for (int sub_sum : sub_results) {
mtx.lock();
result += sub_sum;
mtx.unlock();
}
}
int main() {
ifstream fin("input.in");
int n, m;
fin >> n >> m;
mat matrix(n, vector<int>(m));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
fin >> matrix[i][j];
}
}
int sum = 0;
calculate_tree_sum(matrix, 0, n, 0, m, t, sum);
cout << sum << endl;
return 0;
}
2. Write a parallel program that computes the scalar product of 2 vectors of the same length. Use a binary tree for computing the sum.
#include <iostream>
#include <fstream>
#include <vector>
#include <thread>
#include <mutex>
using namespace std;
mutex mtx;
int compute_scalar_product(const vector<int> &a, const vector<int> &b, int start, int end) {
int product = 0;
for (int i = start; i < end; ++i) {
product += a[i] * b[i];
}
return product;
}
void calculate_tree_scalar_product(const vector<int> &a, const vector<int> &b, int start, int end, int &product) {
if (start == end) {
mtx.lock();
product = a[start] * b[start];
mtx.unlock();
return;
}
int mid = (start + end) / 2;
vector<thread> threads(2);
vector<int> sub_results(2);
threads[0] = thread([&]() { calculate_tree_scalar_product(a, b, start, mid, sub_results[0]); });
threads[1] = thread([&]() { calculate_tree_scalar_product(a, b, mid + 1, end, sub_results[1]); });
for (auto& thread : threads) {
thread.join();
}
mtx.lock();
for (int sub_product : sub_results) {
product += sub_product;
}
mtx.unlock();
}
int main() {
ifstream fin("input.in");
int n;
fin >> n;
vector<int> a(n);
vector<int> b(n);
for (int i = 0; i < n; ++i) {
fin >> a[i];
}
for (int i = 0; i < n; ++i) {
fin >> b[i];
}
int product = 0;
calculate_tree_scalar_product(a, b, 0, n - 1, product);
cout << product << endl;
return 0;
}
3. Write a parallel program that computes the scalar product of 2 vectors of the same length. The program shall use a number of threads specified as input.
#include <iostream>
#include <fstream>
#include <vector>
#include <thread>
#include <mutex>
using namespace std;
mutex mtx;
int compute_scalar_product(const vector<int> &a, const vector<int> &b, int start, int end) {
int product = 0;
for (int i = start; i < end; ++i) {
product += a[i] * b[i];
}
return product;
}
void calculate_tree_scalar_product(const vector<int> &a, const vector<int> &b, int start, int end, int t, int &product) {
if (start == end) {
mtx.lock();
product = a[start] * b[start];
mtx.unlock();
return;
}
if (t == 1) {
mtx.lock();
product = compute_scalar_product(a, b, start, end);
mtx.unlock();
return;
}
int mid = (start + end) / 2;
vector<thread> threads(2);
vector<int> sub_results(2);
threads[0] = thread([&]() { calculate_tree_scalar_product(a, b, start, mid, t / 2, sub_results[0]); });
threads[1] = thread([&]() { calculate_tree_scalar_product(a, b, mid + 1, end, t / 2, sub_results[1]); });
for (auto& thread : threads) {
thread.join();
}
mtx.lock();
for (int sub_product : sub_results) {
product += sub_product;
}
mtx.unlock();
}
int main() {
ifstream fin("input.in");
int t;
fin >> t;
int n;
fin >> n;
vector<int> a(n);
vector<int> b(n);
for (int i = 0; i < n; ++i) {
fin >> a[i];
}
for (int i = 0; i < n; ++i) {
fin >> b[i];
}
int product = 0;
calculate_tree_scalar_product(a, b, 0, n - 1, t, product);
cout << product << endl;
return 0;
}
4. Write a parallel program that computes the n-th power of a square matrix. The program shall use a number of threads specified as input.
#include <iostream>
#include <fstream>
#include <vector>
#include <thread>
#include <cmath>
#include <mutex>
using namespace std;
typedef vector<vector<int>> Mat;
void printMatrix(const Mat& matrix) {
for (size_t i = 0; i < matrix.size(); i++) {
for (size_t j = 0; j < matrix[i].size(); j++) {
cout << matrix[i][j] << " ";
}
cout << '\\n';
}
cout << "\\n";
}
int computePoint(const Mat& a, const Mat& b, size_t i, size_t j) {
int sum = 0;
for (size_t k = 0; k < a.size(); k++) {
sum += a[i][k] * b[k][j];
}
return sum;
}
vector<pair<size_t, size_t>> splitWorkload(size_t n, int t) {
vector<pair<size_t, size_t>> intervals;
size_t index = 0;
size_t step = n / t;
int mod = n % t;
while (index < n) {
intervals.push_back(make_pair(index, index + step + (mod > 0)));
index += step + (mod > 0);
mod--;
}
return intervals;
}
Mat multiply(const Mat& a, const Mat& b, int t) {
int size = a.size();
Mat result(size, vector<int>(size, 0));
vector<thread> threads;
vector<pair<size_t, size_t>> intervals = splitWorkload(size, t);
for (int idx = 0; idx < t; idx++) {
threads.push_back(
thread([intervals, &a, &b, idx, &result]() {
for (int i = intervals[idx].first; i < intervals[idx].second; i++) {
for (int j = 0; j < a.size(); j++) {
result[i][j] = computePoint(a, b, i, j);
}
}
})
);
}
for (int i = 0; i < t; i++) {
threads[i].join();
}
return result;
}
Mat pow(const Mat& a, int n, int t) {
if (n == 1) {
return a;
}
Mat temp = pow(a, n / 2, t);
if (n % 2 == 0) {
return multiply(temp, temp, t);
} else {
return multiply(a, multiply(temp, temp, t), t);
}
}
int main() {
ifstream fin("input.in");
int t;
fin >> t;
int n;
fin >> n;
Mat matrix(n, vector<int>(n));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
fin >> matrix[i][j];
}
}
int exponent;
fin >> exponent;
Mat result(n, vector<int>(n, 0));
if (exponent < 0) {
cout << "Exponent should not be negative." << endl;
} else {
result = pow(matrix, exponent, t);
printMatrix(result);
}
return 0;
}
5. Write a parallel program that computes the product of 2 matrices. The program shall use a number of threads specified as input.
#include <iostream>
#include <fstream>
#include <vector>
#include <thread>
using namespace std;
void multiply_matrices(const vector<vector<int>>& a, const vector<vector<int>>& b, vector<vector<int>>& c, int start, int end) {
int n = a.size();
int m = a[0].size();
int p = b[0].size();
for (int i = start; i < end; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < m; ++k) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
}
int main() {
ifstream fin("input.in");
int t;
fin >> t;
int n;
fin >> n;
vector<vector<int>> a(n, vector<int>(n));
vector<vector<int>> b(n, vector<int>(n));
vector<vector<int>> c(n, vector<int>(n, 0));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
fin >> a[i][j];
}
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
fin >> b[i][j];
}
}
vector<thread> threads;
for (int i = 0; i < t; ++i) {
int start = (i * n) / t;
int end = ((i + 1) * n) / t;
threads.push_back(thread(multiply_matrices, ref(a), ref(b), ref(c), start, end));
}
for (int i = 0; i < t; ++i) {
threads[i].join();
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
cout << c[i][j] << ' ';
}
cout << '\\n';
}
return 0;
}
6. Write a parallel program that computes the product of two big numbers. The program shall use a number of threads specified as input.
#include <iostream>
#include <fstream>
#include <vector>
#include <thread>
using namespace std;
vector <int> solve(vector <int> a, vector <int> b, int T) {
int n = a.size();
int m = 2 * n - 1;
vector <int> c;
c.resize(m, 0);
vector <thread> the;
for(int idx = 0; idx < T; ++idx) {
thr.push_back(thread([&, idx](){
for(int x = idx; x < m; x += T) {
for(int i = 0; i < n; ++i) {
if(x - i >= n || x - i < 0) {
continue;
}
c[x] += a[i] * b[x - i];
}
}
}));
}
for(int i = 0; i < thr.size(); ++ i) {
thr[i].join();
}
return c;
}
int main() {
ifstream fin("input.in");
int t;
fin >> t;
int n;
fin >> n;
vector <int> a, b;
for(int i = 0; i < n; ++ i) {
int x;
fin >> x;
a.push_back(x);
}
for(int i = 0; i < n; ++ i) {
int x;
fin >> x;
b.push_back(x);
}
res = solve(a, b, t);
for(auto it: res) {
cout << it;
}
}
7. Write a parallel program that computes the prime numbers up to N. It is assumed to have the list of primes up to √N, and will check each of the other numbers if it is divisible with a number from the initial list.
#include <iostream>
#include <fstream>
#include <vector>
#include <thread>
#include <cmath>
#include <mutex>
using namespace std;
mutex mtx;
bool is_prime(int num, const vector<int> &primes) {
int sqrt_num = sqrt(num);
for (int prime : primes) {
if (prime > sqrt_num)
break;
if (num % prime == 0)
return false;
}
return true;
}
void find_primes(int start, int end, const vector<int> &initial_primes, vector<int> &result) {
for (int i = start; i <= end; ++i) {
if (is_prime(i, initial_primes)) {
lock_guard<mutex> lock(mtx);
result.push_back(i);
}
}
}
int main() {
ifstream fin("input.in");
int t;
fin >> t;
int n;
fin >> n;
int sqrt_n = sqrt(n);
vector<int> initial_primes;
vector<int> primes;
primes.push_back(2);
initial_primes.push_back(2);
for (int i = 3; i <= sqrt_n; i += 2) {
if (is_prime(i, initial_primes)) {
initial_primes.push_back(i);
primes.push_back(i);
}
}
vector<thread> threads;
vector<vector<int>> thread_results(t);
for (int i = 0; i < t; ++i) {
int start = sqrt_n + 1 + (i * (n - sqrt_n)) / t;
int end = sqrt_n + 1 + ((i + 1) * (n - sqrt_n)) / t - 1;
threads.push_back(thread(find_primes, start, end, ref(initial_primes), ref(thread_results[i])));
}
for (auto& thread : threads) {
thread.join();
}
for (int i = 0; i < t; ++i) {
primes.insert(primes.end(), thread_results[i].begin(), thread_results[i].end());
}
for (int prime : primes) {
cout << prime << " ";
}
cout << endl;
return 0;
}
8. Write a parallel program for solving the k-coloring problem. That is, you are given a number k, and n objects and some pairs among them that have distinct colors. Find a solution to color them with at most n colors in total, if one exists. Assume you have a function that gets a vector with n integers representing the assignment of colors to objects and checks if the constraits are obeyed or not.